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Viscous flows past spherical gas bubbles 

By D. C. BRABSTON 
Data Systems Department, TRW Systems Group, Redondo Beach, California 90278 

A N D  H. B. KELLER 
Applied Mathematics, California Institute of Technology, Pasadena 

(Received 30 May 1974 and in revised form 3 October 1974) 

Computations of the steady viscous flow past a fixed spherical gas bubble are 
reported for Reynolds numbers in the range 0.1 6 R 6 200. Good agreement with 
Moore’s (1963) asymptotic theory for the drag coefficient is obtained for R 2 40 
and with the well-known small-R theory for R 6 8. The method of series trunca- 
tion is used to reduce the problem to a nonlinear two-point boundary-value 
problem, which is then solved by an accurate and efficient finite-difference 
procedure. 

1. Introduction 
We have computed the steady, three-dimensional, axisymmetric, incompres- 

sible, viscous flow past a fixed spherical gas bubble. Our main goal is to check 
Moore’s (1963) asymptotic theory for high Reynolds numbers and to fill in the 
gap down to small Reynolds numbers where C, = S/R is known to be valid. To 
do this we have developed an efficient accurate computation scheme for moderate 
Reynolds numbers using the method of series truncation. Our method is easily 
adapted to flows past a rigid sphere and we have obtained close agreement with 
Dennis & Walker (1971) for this case. 

Several methods have been used for calculating flows past rigid spheres. 
Jenson (1959) used finite differences and relaxation methods on the stream- 
function and vorticity equations. Rimon & Cheng (1969) obtained steady solu- 
tions by integrating the time-dependent equations to a steady state. Dennis & 
Walker (1971) used the method of series truncation. This method has also been 
used for flows about rigid cylinders by Underwood (1969) and by Keller & 
Nieuwstadt (1973). 

Here we formulate the Navier-Stokes equations in terms of a stream function 
and the vorticity and then seek solutions in the form of series of Legendre func- 
tions. This procedure yields a system of coupled second-order nonlinear differ- 
ential equations for the coefficients. Up to this point our work differs from that 
of Dennis & Walker (1971) only in the boundary conditions. We then solve this 
system using the centred Euler or ‘box’ scheme analysed by Keller (1974). We 
use Newton’s method to solve the resulting difference equations and Richardson 
extrapolation to improve the accuracy. This scheme has also been used by Keller 
& Nieuwstadt (1973) for flows about cylinders. 
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Our calculations were carried out for the Reynolds numbers R = 0.1, 0.5, 1,  
5, 10, 20, 40, 60, 120 and 200. The results agree well with Moore’s theory when 
R 2 40 and with the small-R theory when R < $. 

2. Formulation 
Since the flow is axisymmetric we use ( r ,  8 )  co-ordinates, where r is the distance 

from the sphere centre and 8 is the angle measured counterclockwise from the 
downstream direction. We define a dimensionless radial variable E by 

et = r/a, (2.1) 

where a is the sphere radius. The radial and transverse velocity components (u, v )  
are defined in terms of a stream function 9 by 

(2.2a) 

and then the vorticity 6 is determined from 

eEc = a v p t  + v - aulae. (2.2 b) 

The Navier-Stokes equations become 

a2c ac 86 a26 6 -+-+cot8-+--- = $Re6 , (2.3) aE2 a t  a8 a02 sin2B 

where R = 2aU/v is the Reynolds number, U is the free-stream speed and v is 
the kinematic viscosity. As <+ co we impose the Oseen expansion for flow about 
a rigid sphere as a boundary condition. This is actually done at  a finite radius Em. 
Some discussion of this procedure is given in 3 4. On the gas-bubble surface, we 
impose the zero stress condition. (For a rigid sphere this would be replaced by 
the no-slip condition.) Thus, the boundary conditions are (recalling the sym- 
metry about 8 = 0 and 0 = n) 

f l = $ = o  on e=O,n, ( 2 . 4 ~ )  

au a 
ae ag $ = 0, e-6- +-((e-cv) = 0 on E = 0, (2.4b) 

x { 1 - exp [ - f R 4  1 - cos @I}, 
$(Em, 8) = +ex sin2 8 + fe-6 sin2 8 - (3/R) (1  + cos 8 )  

(;&,,, 8) = - je-z  sin 8 exp [ - $Bet( I - cos 8)]  (1 + *Re[). 

We now seek series expansions of $ and 6 of the form 

co r i  
( 2 . 5 ~ )  

m 

(2.5 b )  
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where z = cos 8 and P,(z) and P!;'(z) are, respectively, the Legendre polynomial 
and first associated Legendre function of order n. Substituting these expansions 
into (2.2) and (2.3) we obtain for n = 1,2,  ..., 

f;l(<) - (n + 4)2f,(5) = e % W n  + 1) 9,(<L ( 2 . 6 ~ )  

92f)+g:,(<)-n(n+ l)S,(O = r,, (2.6b) 

m m  

where = - (2n+ 1) 

l(12- 1)  (1  + 2 )  
nm(n+i)(m+I) &,l = - ( 2 n + 1 )  

Here the ( j1 jz j3 ) are the 3-j symbols described by Rotenberg et al. (1959). 

The boundary conditions on the f n  and g, are 

f,(o) = 0, fil(o)-+(n+ l)g,(o) = 0, 

ml m2 m3 

n = 1,2,  ... . (2.7) } fn(tm) = f i ? ( t m ) ,  gn(to0) = g,"(fm), 

Heref,"(f) and g,"(<) are determined by using (2 .5 )  in the Oseen expansion ( 2 . 4 ~ ) .  
They are given explicitly in Brabston (1974). 

The drag coefficient C, is defined by 

C, = D/npU2a2, 

where D is the drag on the sphere and p is the fluid density. The drag is given in 
terms of an integral over any surface surrounding the sphere. Using for the 
surface the sphere f = constant, C, can be calculated as a rather complicated 
sum involving all the f,(<), g,(<), f A ( f )  and gA(<). This expression simplifies con- 
siderably when t; = 0 and the drag is computed on the surface of the bubble. 

The pressure coefficient is 

4 8 )  = (P*(O,@ -P3/9PU2, 

wherep*(O, 0) is the dimensional pressure on the sphere andpz is the dimensional 
free-stream pressure. Explicit formulae for C,(f) and k(0) are given in Brabston 
(1974). 

3. Numerical solution 
We truncate the infinite system (2.6) with (2.7) at N terms; that is we set 

f,(E) = g,(f) = 0 for all n > N .  (3.1) 

The truncated system is written as a finite first-order system: 

F'(t;) = A(t;) F(C) + W f ,  F), (3.2) 
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where 

are 4N-component vectors, f, g, r, etc., being N-component vectors with com- 
ponentsf,(t), g,(O,  r,(t), e% 

0 0 K, K,(k-) 

A ( t ) =  ([ ; K g  ) 
is 4N x 4N, I being N x N ,  while K,, K, and K, are N x N diagonal matrices with 
diagonal elements 

(n + i),, n(n + I)e%t, n(n + 1) 

respectively. The boundary conditions are written as 

(3.3) 

Equations (3.2) and (3.3) form a 4N-component first-order nonlinear system 
with two-point separated end conditions. 

To solve the system (3.2) with (3.3), we use the centred Euler or 'box' scheme 
studied by Keller (1974). Thus we introduce a net on LO, Em] defined by 

c o = O 0 ,  Q=jh,  j = 1 , 2  ,..., J ,  h=t,/J. 

Then the centred Euler scheme for (3.2) and (3.3) is 

h-'[Fj-Fj-l] =A(<j+)i[Fj+ Fj_1]+N(Ej_g,+[Fj+ Fj-i]), (3.4a) 

B, F, = 0, B, F, = r,, (3.4b) 

- ih. The system where Fj is the numerical approximation to F(&) and cj+ = 
of 4N(J-t 1) nonlinear difference equations (3.4) can be written as 

(P(F) = 0, (3.5) 
where 

1- (!:], * (FIG ( F, - FJ-1- *hA(E,*) [ F, + FJ-,I 

Bo Fa 
F,- Fo-+hA(t+)[F,+ F,I-Wtg,*[F,+ FOI), 

F =  

FJ -hN(t,-g, HF,+ FJ-11) 
B, F.7 - r m  

To solve this system we use Newton's method with the sequence of iterates 
(F(")) written as 

(3.6) F(u+1) = F(v) + 8 F(4. 
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The corrections 6F(j’) are defined by using (3.6) in (3.5) and linearizing to get 

T(u@ F(v) f ( a @ ( v ) / a  F) $F(j’) = - *( FW). (3.7) 

Here T ( v )  E aW)/aF  is the 4N(J + 1)-order Jacobian matrix evaluated at F = F@). 
It has block tridiagonal form and thus 6F@) can be efficiently computed by a 
variety of direct factorization methods. Under very general conditions it can be 
proved that the Newton iterates converge quadratically; that is, 

IISF(v+l)jl G Kj16F(v)1/2. 

Thus the convergence of this method is fast and can be observed in the 
calculations. 

Owing to the two-point nature of the difference scheme, the separated form 
of the boundary conditions and the order in which we have written the equations 
in (3.5) the matrix T has the block tridiagonal form 

where each of the block matrices A,, 8, and Cj is 4N x 4N. Since the boundary- 
condition matrices Bo and B, are 2N x 4N,  the C,’s all have zeros in their upper 
2N rows as do the B,’s in their lower 2N rows. 

The basic block or band factorization methods for solving (3.7) all become 
inaccurate as R and N are increased. Residual corrections fail to improve the 
results significantly. Hence we turn to a more sophisticated factorization moti- 
vated by the ‘parallel shooting’ method for differential equations studied by 
Keller (1968). 

Our factorization consists of writing T as the product of two matrices of the 
form 

(3.9) 

Here L, is a 4Nk-order square-block lower diagonal matrix, U, is a 4Nk-block 
upper diagonal matrix, U, is a 4 ( J  +- 1 - k)-block upper triangular matrix, L, is 
a 4N(J + 1 - ,$)-block lower triangular matrix and y and 6 are 4N-order matrices. 
The elements of T, and T, can be determined explicitly once the forms of the 
diagonal matrices in, say, TI are specified. For our computations, we chose the 
diagonal blocks of T, to be the 4N-order identity matrix. Brabston (1974) gives 
the complete recursion relations for solving (3.7) using the factorization (3.9). 
These relations are very similar to those for the simpler factorizations given by 
Keller ( 1974). 

Given an initial estimate F@), which we take as the solution for the next lowest 
R value, we use (3.6), (3.7) and the factorization (3.9) to generate successive 
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R 

0.1 
0.5 

5 
20 
60 

120 
200 

N J  

6 31 
6 31 
6 31 

16 31 
20 61 
20 61 
30 61 

SC;’ 

77.61 
0.6254 
0.3545 
0.1567 
0.7448 x 10-l 
0.1130 
0.8336 x 10-1 

ll~F(l’lla 

2335.0 
4.334 
4.375 
2.340 
1.799 
5.492 
62.07 

~ ~~ 

SCE’ 

0.4575 
0.1053 x lop2 
0.4194 x 
0.1559 x 10-1 
0.7151 x lo-’ 
0.1915 x 
0.2049 x 

l l~F(2) l lm SCb”’ II ~F(s’ll, 
3.789 0.6256 x 0.3388 X lo-’ 

0.1238 0.6986 x 10-6 0.3738 X 

1.161 0.5717 x 0.4582 X 10-1 
1.193 0.9614 x 0.3662 
1.552 0.2867 x 0.8015 X lo-’ 
80.53 

0.2635 x 10-1 0.0 0-3812 x 

TABLE 1.  Convergence of SC;’ and 11 GF(u)[J 

Newton iterates. For ‘small’ R the rigid-sphere solution can be used for the 
initial guess. 

Keller (1974) shows that, under reasonable conditions, the error incurred by 
using the difference scheme has the expansion 

F(&) - Fj = laze(&) + O(h4). (3.10) 

Here e(6) is independent of h, so that Richardson extrapolation is valid. In  this 
extrapolation, we compute Fj, and Fj, (approximations to F(&)) using mesh 
spacings h and +h, respectively. Then, defining - 

we have 
(3.11) 

A 

Thus Fj is a higher-order accurate approximation to the solution. 

4. Error evaluation 
To assess the accuracy of our computed solution, we note that there are five 

sources of error: (u)  iteration error in solving (3.4); (b)  discretization error, 
( c )  series truncation error, ( d )  outer boundary condition error, ( e )  round-off error. 

We checked to see that Newton’s method converges quadratically by observing 
the drag coefficient C:), computed on the sphere surface, for each iteration. 
Iterations were continued until we could establish that 

pg+1Lc(v) DI 6 3pgL(7g-l)~Z. (4.1) 

The convergence of SCg) and of 6FO are shown for a range of Reynolds numbers 
in tablg 1.  For each R except R = 200 we also computed until 

pcg)l = I cg) - cg-1)) < 10-3. 

The finite-difference discretization error can be reduced by using Richardson 
extrapolation as described in 3 3. One important check on the numerical solution 
is to see how the computed drag coefficient varies with the radius. This variation 
is shown in table 2 .  We observe that Richardson extrapolation improves the drag 
constancy quite significantly. Note however the large deviation of CD([) from 
CD(0) as <+-.fla for R = 200. We believe this to be due to ill conditioning in 
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E 
0 
0.32667 
0.65333 
0.98000 
1.3067 
1.6333 
1.9600 
2.2867 
2.6133 
2.9400 
3.2667 
3.5933 
3.9200 
4.2467 
4.5733 
4.9000 

R = 0-5 
N = 6  
+7 

I I1 

16.24 16.85 
16.14 16.85 
16.05 16.85 
15.95 16.84 
15.85 16.84 
15.76 16.84 
15.67 16.84 
15.56 16.84 
15.45 16.84 
15.33 16.84 
15.18 16.83 
15-01 16.83 
14.82 16.83 
14.61 16.82 
14.39 16.81 
14.23 16.80 

R = 40 
N = 20 
+7 

I I1 

0.3963 0.4156 
0.3993 0.4153 
0.3850 0.4156 
0.3729 0.4158 
0.3630 0.4158 
0.3546 0.4157 
0.3470 0.4155 
0.3401 0.4153 
0.3335 0.4150 
0.3273 0.4146 
0.3213 0.4143 
0.3162 0.4136 
0.3134 0.4124 
0-3087 0-4115 
0.3036 0.4109 
0.2982 0.4103 

R = 60 
N = 20 
7-7 

I I1 

0.2967 0.3001 
0.2972 0.3000 
0.2938 0.3001 
0.2914 0.3001 
0-2895 0.3001 
0.2879 0.3001 
0.2864 0.3001 
0.2850 0.3001 
0.3837 0.3001 
0.2825 0.3000 
0.2812 0.3000 
0.2800 0.3000 
0.2788 0.2999 
0.2776 0.2987 
0.2763 0.2992 
0.2750 0.2996 

R = 200 
N = 3 0  
7--- 

I I1 

0.1012 0.0985 
0.1015 0.0995 
0.1007 0.0995 
0.1004 0.0996 
0.1001 0.0997 
0.0999 0.0998 
0.0998 0.1000 
0-1016 0.1038 
0-1012 0.1035 
0.1012 0.1030 
0.1017 0.1027 
0.1033 0.1063 
0.1072 0.1141 
0.1098 0.1313, 

- 0.0216 - 0.097t 
-0.1083 -0.2717 

TABLE 2. Co( 6) calculated with and without Richardson extrapolation. 
I, without extrapolation; 11, with extrapolation. 

R N J Richardson 

0.1 
0.5 
1 
5 

10 
20 
40 
60 

120 
200 

6 
6 
6 
6 

16 
20 
20 
20 
30 
30 

60 
60 
60 
60 
30 
30 
60 
90 
90 
90 

Yes 
Yes 
Yes 
Yes 
No 
N O  

Yes 
Yes 
Yes 
Yes 

TABLE 3. N and J used for various R 

solving (3.7) for the Newton iterates. Indeed the same phenomenon occurred for 
smaller R and that was the motivation for introducing the 'parallel-shooting ' 
factorization (3.9). We have not tried to eliminate this growth of C&) for 
R = ZOO. 

The error due to truncating the series can only be estimated empirically since 
we have no analytic bound on the remainder. Clearly one expects that the number 
N of terms should be increased with R. We did not do any serious testing of the 
effect of varying N for larger Reynolds numbers as the computation time varies 
as N3. Our modest tests have general agreement with the truncations used by 
Dennis & Walker (1971) for rigid spheres. Table 3 shows the largest value of N 
and J used for each Reynolds number. 

The error due to imposing the outer boundary conditions at a finite distance 
from the sphere can be estimated by computing solutions with different values 
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of tm. We computed solutions with and 4.9 (the value used by 
Dennis & Walker), and the results were substantially different. The greater 
distance was used in all of our calculations. This may not be a sufficiently large 
value for R > 200. More testing and a better understanding of this point would 
be of great value. This error may be related to the growth of C,(f) as f +  Em but 
we have no strong evidence for this in our present computations. 

It is far from clear that the Oseen expansion for a rigid sphere as imposed in 
(2.4~) is valid for all Reynolds numbers. Indeed the correct condition for flow 
about a gas bubble must lie between that for a rigid sphere and the free stream 
(i.e. no obstruction). Thus we have computed the solutions using free-stream 
conditions imposed a t  grn = 4.9 for R = 5 and R = 120. The resulting C, values 
computed on the sphere surface were altered by about 0.01 yo. 

The round-off errors are a function of the computer used to perform the calcu- 
lations. Our computations were done on an IBM 3701155 in single precision, 
which gives about seven significant digits. Round-off error compounded by the 
ill conditioning of the linear system (3.7) caused a lack of quadratic convergence 
in Newton’s method for the higher Reynolds numbers. Upon using the ‘parallel 
shooting ’ factorization (3.9) of T, Newton’s method converged quadratically. 
This convergence and the demonstrated accuracy given by Richardson extra- 
polation indicate that round-off error is not a substantial factor in most of our 
results. However we believe that it does contribute td the variation in C,(E) 
at R = 300. 

D .  C .  Brabston and H .  B.  Keller 

equal to 

5. Results and assessment 
Table 3 shows the Reynolds numbers for which our calculations were per- 

formed along with the numbers of series terms and maximum numbers of mesh 
points used. Richardson extrapolation was used for all Reynolds numbers 
except R = 10 and R = 20. 

One of the main purposes of our work was to check the theoretical result of 
Moore (1963) for the drag on the bubble a t  high Reynolds numbers. Batchelor 
(1967, p. 368) gives the drag coefficient as 

CD = 241R. (5.1) 

Moore gives the higher-order approximation for this as 

14) i- O(R-t))  
4 x 2$(6 x 3$+5  x 26-  

5n3R4 

2.2107 + O(R-g)) .  
R3 

Our calculations bear out Moore’s result very well. Table 4 shows our computed 
value of C,, Moore’s value, the first-term expansion value and the difference 
between our value and Moore’s value as a percentage of the latter. 

At low Reynolds numbers the asymptotic formula for the drag coefficient is 

C, = SIR. 
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Present Moore's Difference 
R CD(0) C D  (%) 24/R 

10 1.175 0.7222 62.7 2.4 
20 0.6810 0.6068 12-2 1.2 
40 0.4156 0.3903 6.47 0.6 
60 0.3001 0.2858 5.00 0.4 

120 0,1647 0.1596 3.18 0.2 
200 0.0985 0.1012 2.71 0.12 

TABLE 4. Drag coefficient for present calculations and Moore's theory 

Present Difference 
R SIR CD(0) (%) 
0.1 80 80.83 1.04 
0.5 16 16.85 5-31 
1.0 8 8.795 9.95 
5.0 1.6 2-184 36-3 

TABLE 5. Drag coefficients for low Reynolds numbers 

Table 5 shows this theoretical value of the drag coefficient, our calculated value 
and the difference (as a percentage of the theoretical value) for the lower Reynolds 
numbers. From tables 4 and 5 we thus see that our computed values for 
0-5 < R 6 40 cover a range in which no accurate approximate formula is known. 

Other physical parameters of interest are the vorticity and pressure coefficient 
(defined in $2)  on the bubble surface. These are plotted for the higher Reynolds 
numbers in figures 1 (a )  and (b ) .  The transverse velocity on the bubble is given 
by v(O,8) = $C(O, 8). One physical phenomenon of special interest is that of flow 
separation behind the bubble. Levich (1962, p. 445) states that the separation 
zone extends only 2" on either side of the line of symmetry at R = 1250. Thus it 
was no surprise that we did not find evidence of separation. However, it should 
be noted that the pressure profiles a t  R = 120 and 200 are rather far from the 
symmetric profiles of t'he inviscid theory. 

The major portion of the computation time is required to solve the linear 
system (3.7). The number of operations involved, and hence the time, is propor- 
tional to N3J.  For N = 20 and J = 60, the computing time was approximately 
2100s for one Newton iterate on an IBM3701155. Since both N and J must 
increase with Reynolds number we are very close to the limit of what can reason- 
ably be done with this method on our present machine. 

We have computed the drag on rigid spheres for R = 0.1, 0-5, 1, 5, 10. Our 
results agree with those of Dennis & Walker (1971) to three or four digits. 

We wish to thank D. W. Moore for bringing this problem to our attention and 
for his enlightening comments as the work progressed. This work is part of the 
f i s t  author's Ph.D. thesis at  Caltech. Part of the work was supported under 
Contract AT(04-3)-767 with the U.S. Atomic Energy Commission. 
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R = 200 

FIGURE 1. (a) Vorticity and ( b )  pressure coefficients on the bubble surface. 
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